Preliminary Communication

Insertion of a carbenoid unit into an Fe_2P_2 cluster *

V. Kumar, M.G. Newton and R.B. King

Department of Chemistry, University of Georgia, Athens, GA 30602 (USA)

(Received October 18, 1993)

Abstract

Reaction of $({}^{i}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$ with Me₃SiCHN₂ or Me₃SiC-(Li)N₂ in hexane gives the orange complex $[({}^{i}Pr_{2}NP)_{2}CHSiMe_{3}]Fe_{2}$ -(CO)₆ which has been shown by an X-ray diffraction study to have a structure in which the carbenoid unit Me₃SiCH: generated from Me₃SiCHN₂ has inserted into the $({}^{i}Pr_{2}NP)_{2}Fe_{2}(CO)_{6}$ unit generated from $({}^{i}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$ by extrusion of the phosphorus-bridging carbonyl group.

Key words: Iron; Phosphorus; Carbonyl; Carbene; Cluster; Crystal structure

The phosphorus-bridging carbonyl derivative (¹Pr₂- $NP_2COFe_2(CO)_6$ (I) [1,2] readily loses its phosphorus-bridging carbonyl group at 80-110°C to give a reactive $({}^{1}Pr_{2}NP)_{2}Fe_{2}(CO)_{6}$ unit, which can be trapped by alcohols to give (ⁱPr₂NPOR)(ⁱPr₂NPH)Fe₂(CO)₆ (R = Me, Et) [3], by aldehydes and ketones to give $[(^{i}PrNP)_{2}OCRR']Fe_{2}(CO)_{6}$ (R = R' = H, Ph; R = Ph, R' = H, Me; $R + R' = -(CH_2)_{5^{-}}$ [4], and by nitriles to give $[({}^{i}Pr_{2}NP)_{2}N=CR]Fe_{2}(CO)_{6}$ (R = Me, Ph) [5]. We report here the first example of trapping of the reactive $({}^{1}Pr_{2}NP)_{2}Fe_{2}(CO)_{6}$ unit by a carbenoid unit, RR'C:, to give the corresponding $[({}^{i}Pr_{2}NP)_{2}CRR']Fe_{2}(CO)_{6}$ derivative (II). Since the $({}^{1}Pr_{2}NP)_{2}Fe_{2}(CO)_{6}$ unit is unstable at the temperature at which it is formed in the absence of a trapping agent, a carbenoid unit must be chosen which is generated at the same temperature as the $({}^{i}Pr_{2}NP)_{2}Fe_{2}(CO)_{6}$ unit. Trimethylsilyldia-zomethane [6] was found to be a suitable carbene generator for this purpose.

A yellow solution of trimethylsilyldiazomethane (0.8)ml of a 2 M hexane solution from Aldrich Chemical Company) in 25 ml of hexane was deprotonated with 1 ml of a 2 M solution of n-butyllithium in hexane at 0°C. The resulting white suspension of Me₃SiC(Li)N₂ was boiled under reflux with 1.12 g (2 mmol) of $({}^{1}Pr_{2}NP)_{2}$ -COFe₂(CO)₆ (I) for 16 h. The ${}^{31}P$ NMR spectrum of the supernatant liquid showed singlet resonances at δ 226 from unchanged $({}^{1}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$ and δ 140 from the product. The product was separated by chromatography under nitrogen on a silica column with hexane as eluent. Removal of solvent at 25°C/0.2 mmHg from the eluate of the first band followed by repeated crystallization from hexane gave 0.04 g (4%) yield) of orange crystalline [(¹Pr₂NP)₂CHSiMe₃]Fe₂- $(CO)_6$ (II: R = SiMe₃; R' = H), m.p. 135–136°C (dec); anal., calcd for C₂₂H₃₈Fe₂P₂N₂O₆Si: C, 42.1; H, 6.1; N, 4.5. Found: C, 42.0; H, 6.1; N, 4.4; infrared ν (CO) in hexane: 2043s, 2025w, 1999s, 1976s, 1955s, and 1934s cm⁻¹; ³¹P NMR in CDCl₃ (relative to external 85% H_3PO_4): δ 140.8; ¹H NMR in CDCl₃ (relative to internal Me₄Si): δ 6.48 (triplet, J = 23 Hz: CH), δ 3.49 (apparent septet, J = 7 Hz: isopropyl CH), δ 1.22 (multiplet: isopropyl CH₃, and δ 0.25 (singlet: Me₃Si); ¹³C NMR in CDCl₃ (relative to internal Me₄Si): δ 214.4 (FeCO), δ 114.0 (CH), δ 53.4 (isopropyl CH), δ 23.6 and δ 23.4 (isopropyl CH₃ groups), and δ 1.6 (Me₃Si).

The compound $[({}^{1}Pr_{2}NP)_{2}CHSiMe_{3}]Fe_{2}(CO)_{6}$ (II: $R = SiMe_{3}$; R' = H) is also formed by the more direct reaction of $({}^{1}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$ (1.12 g, 2.0 mmol) and $Me_{3}SiCHN_{2}$ (2.25 mmol) in 25 mL of boiling hexane under reflux for 24 hr with apparent elimination of CO from $({}^{1}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$ and N_{2} from $Me_{3}SiCHN_{2}$. However, the ${}^{31}P$ NMR spectrum of the reaction mixture indicates the formation of not only $[({}^{1}Pr_{2}NP)_{2}CHSiMe_{3}]Fe_{2}(CO)_{6}$ (δ 140.8) but also unidentified byproducts exhibiting pairs of doublets at δ 281.5 and 245.2 (J = 122 Hz) and at δ 255.8 and 216.0 (J = 111 Hz), so that the cleaner but less direct reaction of Me_{3}SiC(Li)N_{2} with $({}^{1}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$

Correspondence to: Professor R.B. King.

^{*} This paper is dedicated to Prof. Helmut Werner in recognition of his many contributions to organometallic chemistry and related areas.

Fig. 1. ORTEP diagram of $[({}^{4}Pr_{2}NP)_{2}CHSiMe_{3}]Fe_{2}(CO)_{6}$ (II: R = SiMe₃; R' = H): Fe1-Fe2, 2.612(3) Å; Fe1-P1, 2.226(3) Å; Fe1-P2, 2.228(4) Å; Fe2-P1, 2.239(4) Å; Fe2-P2, 2.230(4) Å; P1-C19, 1.88(1) Å; P2-C19, 1.91(1) Å.

(I) described above appears to be more suitable for obtaining a pure product.

The structure of $[({}^{1}Pr_{2}NP)_{2}CHSiMe_{3}]Fe_{2}(CO)_{6}$ (II: $R = SiMe_{3}$; R' = H) (Fig. 1) was determined by X-ray diffraction [7]. The presence of the expected Fe₂P₂C central unit similar to that in the $({}^{1}Pr_{2}NP)_{2}COFe_{2}$ -(CO)₆ (I) starting material was confirmed. The P-C-P angle in this Fe₂P₂C unit changes from 84.4° in I to 78.5(5)° in $[({}^{1}Pr_{2}NP)_{2}CHSiMe_{3}]Fe_{2}(CO)_{6}$. The other measured angles around this carbon atom (Si-C-P angles) are 122.1(6)° and 122.0(6)°, close to the ideal 120° for an sp^{2} carbon atom, which may account for the ${}^{1}H$ and ${}^{13}C$ chemical shifts of this carbon atom and the hydrogen directly bonded to it appearing in the sp^{2} region rather than the sp^{3} region.

The reaction conditions used to convert $({}^{1}Pr_{2}NP)_{2}$ -COFe₂(CO)₆ (I) into $[({}^{1}Pr_{2}NP)_{2}CHSiMe_{3}]Fe_{2}(CO)_{6}$ (II:

 $R = SiMe_3$; R' = H) by reaction with $Me_3SiC(Li)N_2$ are similar to those used to convert diaryl ketones RR'C=O into the corresponding alkynes R'C=CR [8] in a variation of the Peterson reaction [9]. An analogous reaction of $({}^{1}Pr_{2}NP)_{2}COFe_{2}(CO)_{6}$ (I) with Me₃SiC(Li)N₂ would be very unfavorable because of excessive P-C=C-P angular strain in the expected alkyne product $({}^{1}Pr_{2}NPC=CPN-{}^{1}Pr_{2})Fe_{2}(CO)_{6}$ similar to that in small-ring alkynes such as cyclopentyne. In addition, the ability to isolate $[(Pr_2NP)_2CHSiMe_3]Fe_2(CO)_6$ (II: $R = SiMe_3$; R' = H) from $({}^{1}Pr_2NP)_2COFe_2(CO)_6$ (I) and $Me_3SiC(Li)N_2$ is of interest since reduction of (¹Pr₂- $NP_{2}COFe_{2}(CO)_{6}$ (I) with $LiAlH_{4}$ does not give the analogous methylene-bridged derivative $[(Pr_2NP)_2$ - CH_2]Fe₂(CO)₆ (II: R = R' = H) but instead its P-H bonded tautomer (${}^{i}Pr_{2}NPHCHPN {}^{i}Pr_{2}$)Fe₂(CO)₆ [3].

References

- 1 R.B. King, F.-J. Wu, N.D. Sadanani and E.M. Holt, Inorg. Chem., 24 (1985) 4449.
- 2 R.B. King, F.-J. Wu and E.M. Holt, J. Am. Chem. Soc., 109 (1987) 7764.
- 3 R.B. King, F.-J. Wu and E.M. Holt, J. Am. Chem. Soc., 110 (1988) 2775.
- 4 R.B. King, N.K. Bhattacharyya and E.M. Holt, J. Organomet. Chem., 421 (1991) 247.
- 5 Y.W. Li, M.G. Newton and R.B. King, Inorg. Chem., in press.
- 6 D. Seyferth, A.W. Dow, H. Menzel and T.C. Flood, J. Am. Chem. Soc., 90 (1968) 1080.
- 7 Crystal data for [(¹Pr₂NP)₂CHSiMe₃]Fe₂(CO)₆ (II): C₂₂H₃₈Fe₂-P₂N₂O₆Si, mol. wt., 628.3, monoclinic crystals: space group P2₁; a 9.771(2), b 16.220(1), c 10.559 (2) Å, β 114.34°, V 1524(8) Å³, D_{calc} 1.368 g/cm³, Z = 2. The structure was solved by direct methods, expanded using Fourier techniques, and the nonhydrogen atoms refined anisotropically (Cu-K\alpha radiation, μ (Cu-K α) 93.03 cm⁻¹, F(000) 656, 3270 unique measured reflections, R = 0.050, $R_w =$ 0.056 for preferred hand). Tables of atomic coordinates, bond lengths and angles, and thermal parameters have been deposited with the Cambridge Crystallographic Data Centre.
- 8 E.W. Colwin and B.J. Hamill, J. Chem. Soc., Perkin Trans. I, (1977) 869.
- 9 D.J. Ager, Synthesis, (1984) 384.